Image Denoising with Sparsity Distillation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Denoising with Sparsity Distillation

We propose a new image denoising method with shrinkage. In the proposed method, small blocks in an input image are projected to the space that makes projection coefficients sparse, and the explicitly evaluated sparsity degree is used to control the shrinkage threshold. On average, the proposed method obtained higher quantitative evaluation values (PSNRs and SSIMs) compared with one of the state...

متن کامل

Group Sparsity Residual Constraint for Image Denoising

Group sparsity or nonlocal image representation has shown great potential in image denoising. However, most existing methods only consider the nonlocal self-similarity (NSS) prior of noisy input image, that is, the similar patches collected only from degraded input, which makes the quality of image denoising largely depend on the input itself. In this paper we propose a new prior model for imag...

متن کامل

Group Sparsity Residual with Non-Local Samples for Image Denoising

Inspired by group-based sparse coding, recently proposed group sparsity residual (GSR) scheme has demonstrated superior performance in image processing. However, one challenge in GSR is to estimate the residual by using a proper reference of the group-based sparse coding (GSC), which is desired to be as close to the truth as possible. Previous researches utilized the estimations from other algo...

متن کامل

Sparsity Based No-Reference Image Quality Assessment for Automatic Denoising

In image and video denoising, a quantitative measure of genuine image content, noise, and blur is required to facilitate quality assessment, when the ground-truth is not available. In this paper, we present a no-reference image quality assessment for denoising applications, that examines local image structure using orientation dominancy and patch sparsity. We propose a fast method to find the d...

متن کامل

A New Shearlet Framework for Image Denoising

Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IPSJ Transactions on Computer Vision and Applications

سال: 2015

ISSN: 1882-6695

DOI: 10.2197/ipsjtcva.7.50